

AQT0150 - RIPK1 Assay Validation

PhosphoSens®-Kinetic Assay Format

1

Outline for this Study

PhosphoSens-Kinetic Assay Validation

Enzyme Source, Construct, and Lot Information:

SignalChem RIPK1, (Cat & Lot #, R07-11G/O3960-16) amino acids 1-327, N-term GST-tag

Reference Compound Information:

Staurosporine

Experiments to be run:

Enzyme Titration

Sensor Peptide K_m Determination

ATP K_m Determination

DMSO Tolerance Test

Reference Compound IC₅₀ Determination at ATPK_m

Enzyme Titration

AssayQuant®

Reaction Conditions and Set Up

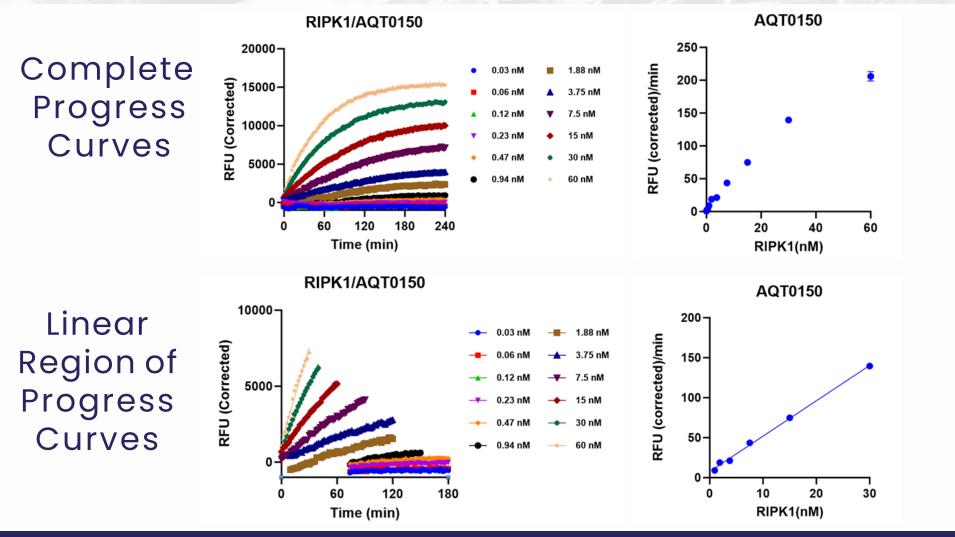
Reaction Conditions:

54 mM HEPES, pH 7.5 1mM ATP 1.2 mM DTT 0.012% Brij-35 1% glycerol 0.2 mg/ml BSA 0.55 mM EGTA 10 mM MgCl₂ 20 μM AQT0150 0.03, 0.06, 0.12, 0.23, 0.47, 0.94, 1.88, 3.75, 7.5, 15, 30, and 60 nM RIPK1

Reaction Set Up:
2 or 2.5 μL10x Sensor Peptide14 or 17.5 μLReaction Mix with ATP & DTT4 or 5 μL1x EDB or Kinase dilutions (5x in EDB)20 or 25 μLFinal reaction volume

Reactions were run at 30°C for 240 minutes in either Corning, low volume 384-well, white flat round bottom polystyrene NBS microplates (Cat. #3824) at 20 or 25 μ L final well volume or in in PerkinElmer, ProxiPlate-384 Plus, white shallow well microplates (Cat. #6008280) at 20 μ L final well volumeafter sealing using optically-clear adhesive film (TopSealA-Plus plate seal, PerkinElmer [Cat. #6050185]) in a Biotek Synergy Neo 2 microplate reader with excitation (360 nm) and emission (485 nm) wavelengths.

Notes:


Enzyme Titration

Linear

Range

Progress Curves

How Can We Help? For technical questions, please reach out at hello@assayquant.com

Enzyme Titration

AssayQuant[®]

Reaction Rate Table

Enzyme Conc. (nM)	Normalized Reaction Rate (RFU/pmole/min)	Normalized Rate Stnd Error (RFU/pmole/min)	
0.03	1,190	325	
0.06	1,283	180	
0.12	869	66	
0.23	577	38	
0.47	414	21	
0.94	484	22	
1.88	504	10	
3.75	283	5	
7.5	291	4	
15	250	3	
30	233	6	
60	172	6	

The reaction is linear from 3.75 - 30 nM

Sensor Peptide K_m Determination

Reaction Conditions and Set Up

Reaction Conditions:

54 mM HEPES, pH 7.5 1mM ATP 1.2 mM DTT 0.012% Brij-35 1% glycerol 0.2 mg/ml BSA 0.55 mM EGTA 10 mM MgCl₂ 1, 2, 3, 5, 7, 10, 15, 20, 30, 50, 70, and 100 μM AQT0150 20 nM RIPK1

Reaction Set Up:
2 or 2.5 μL10x Sensor Peptide14 or 17.5 μLReaction Mix with ATP & DTT4 or 5 μL1x EDB or Kinase dilutions (5x in EDB)20 or 25 μLFinal reaction volume

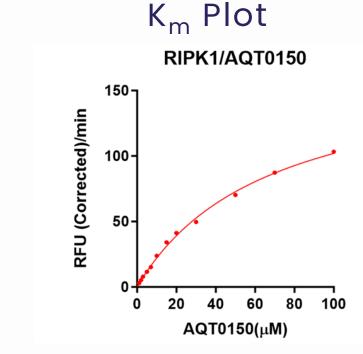
Reactions were run at 30°C for 240 minutes in either Corning, low volume 384-well, white flat round bottom polystyrene NBS microplates (Cat. #3824) at 25 μ L final well volume or in in PerkinElmer, ProxiPlate-384 Plus, white shallow well microplates (Cat. #6008280) at 20 μ L final well volumeafter sealing using optically-clear adhesive film (TopSealA-Plus plate seal, PerkinElmer [Cat. #6050185]) in a Biotek Synergy Neo 2 microplate reader with excitation (360 nm) and emission (485 nm) wavelengths.

Notes:

Sensor Peptide K_m Determination

Titration Curves and K_m Plot and Table

Sensor Peptide Titration Curves


RIPK1/AQT0150

60

Time (min)

8000-

RFU (Corrected) 00 00

Sensor Peptide

Sensor Peptide K_m Table

AssayQuant

Michaelis-Menten	
Best-fit values	
Vmax	170.5
Km	67.26
Std. Error	
Vmax	7.234
Km	5.196
95% CI (profile likelihood)	
Vmax	155.5 to 188.8
Km	56.69 to 80.68
Goodness of Fit	
Degrees of Freedom	10
R squared	0.9973

Sensor Peptide K_m is 67 µM

120

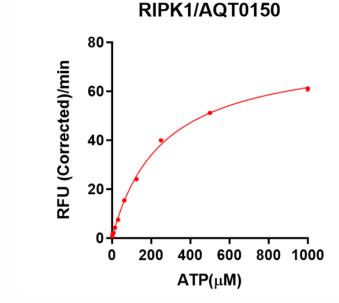
ATP K_m Determination

Reaction Conditions and Set Up

Reaction Conditions:

54 mM HEPES, pH 7.5
0, 2.0, 3.9, 7.8, 16, 31, 63, 125, 250, 500, 1000, and 2000 μM ATP
1.2 mM DTT
0.012% Brij-35
1% glycerol
0.2 mg/ml BSA
0.55 mM EGTA
10 mM MgCl ₂
20 μM AQT0150
15 nM RIPK1

Reaction Set Up:
2 or 2.5 μL10x Sensor Peptide14 or 17.5 μLReaction Mix with ATP & DTT4 or 5 μL1x EDB or Kinase dilutions (5x in EDB)20 or 25 μLFinal reaction volume


Reactions were run at 30°C for 240 minutes in either Corning, low volume 384-well, white flat round bottom polystyrene NBS microplates (Cat. #3824) at 25 μ L final well volume or in in PerkinElmer, ProxiPlate-384 Plus, white shallow well microplates (Cat. #6008280) at 20 μ L final well volumeafter sealing using optically-clear adhesive film (TopSealA-Plus plate seal, PerkinElmer [Cat. #6050185]) in a Biotek Synergy Neo 2 microplate reader with excitation (360 nm) and emission (485 nm) wavelengths.

Notes:

ATP K_m Determination

Titration Curves and K_m Plot and Table

ATP Titration Curves

ATP K_m Table

Michaelis-Menten		
Best-fit values		
Vmax	77.22	
Km	255.5	
Std. Error		
Vmax	1.653	
Km	14.00	
95% CI (profile likelihood)		
Vmax	73.67 to 81.08	
Km	226.3 to 288.9	
Goodness of Fit		
Degrees of Freedom	9	
R squared	0.9985	

RIPK1/AQT0150

ATP K_m is 256 µM

ATP K_m Plot

How Can We Help? For technical questions, please reach out at hello@assayquant.com

DMSO Tolerance Test

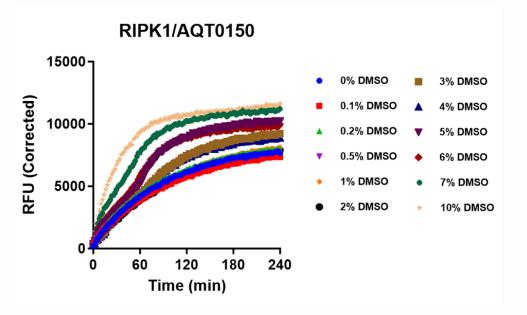
Reaction Conditions and Set Up

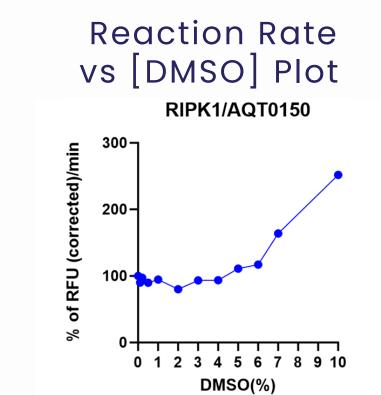
Reaction Conditions:

54 mM HEPES, pH 7.5
1 mM ATP
1.2 mM DTT
0.012% Brij-35
1% glycerol
0.2 mg/ml BSA
0.55 mM EGTA
10 mM MgCl₂
0, .01, .02, .04, .08, .16, .31, .63, 1.3, 2.5, 5.0, and 10% DMSO
15 μM AQT0150
30 nM RIPK1

Reaction Set Up:
2 or 2.5 μL10x DMSO dilutions14 or 17.5 μLReaction Mix with Sensor Peptide, ATP & DTT4 or 5 μL1x EDB or Kinase dilutions (5x in EDB)20 or 25 μLFinal reaction volume

Reactions were run at 30°C for 240 minutes in either Corning, low volume 384-well, white flat round bottom polystyrene NBS microplates (Cat. #3824) at 25 μ L final well volume or in in PerkinElmer, ProxiPlate-384 Plus, white shallow well microplates (Cat. #6008280) at 20 μ L final well volumeafter sealing using optically-clear adhesive film (TopSealA-Plus plate seal, PerkinElmer [Cat. #6050185]) in a Biotek Synergy Neo 2 microplate reader with excitation (360 nm) and emission (485 nm) wavelengths.


Notes:


DMSO Tolerance Test

Titration Curves and Inhibition Plot

Complete Progress Curves

No change in enzyme activity out to 4% DMSO

IC₅₀ Determination

Reaction Conditions and Set Up

Reaction Conditions:

54 mM HEPES, pH 7.5 ATP at K_m

1.2 mM DTT

0.012% Brij-35

1% glycerol

0.2 mg/ml BSA

0.55 mM EGTA

10 mM MgCl₂

1% DMSO

 $20 \ \mu M \ AQT0150$

15 nM RIPK1

0.1 mM Staurosporine was serially diluted (3-fold, 11-point) in 100%DMSO. The series was then diluted 10-fold into BSA (with a final concentration of 0.2 mg/mL BSA in 10% DMSO) to prepare the 10x compound stocks.

Reaction Set Up:

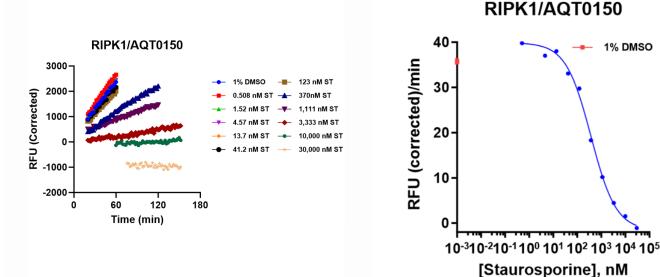
- 16 μL Reaction Mix with Sensor Peptide and Inhibitor
- $4 \mu L$ 1x EDB or Kinase dilutions (5x in EDB)
- 20 μL Final reaction volume

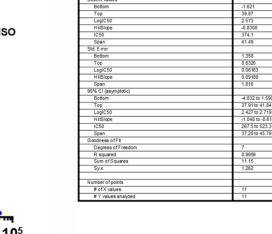
Reactions were run at 30°C for 240 minutes in either Corning, low volume 384-well, white flat round bottom polystyrene NBS microplates (Cat. #3824) at 20 μ L final well volume or in in PerkinElmer, ProxiPlate-384 Plus, white shallow well microplates (Cat. #6008280) at 20 μ L final well volumeafter sealing using optically-clear adhesive film (TopSealA-Plus plate seal, PerkinElmer [Cat. #6050185]) in a Biotek Synergy Neo 2 microplate reader with excitation (360 nm) and emission (485 nm) wavelengths.

Inhibitors are added via direct (0.4 μ L of 50X stock in 100% DMSO) or intermediate dilutions (2.0 μ L of 10X stock in 10% DMSO).

Notes:

IC₅₀ Determination




Progress Curves and IC₅₀ Curves and Table

Linear Region of Progress Curves

IC₅₀ Curve

IC₅₀ Table

The Y-axis label is RFU/min.

Staurosporine IC₅₀ Determination at ATP K_m is 370 nM

Summary

Assay Validation Results and Progress Curve and Assay Strength at 1 mM ATP

Experiment				Resu	lt	Progress Curve	
Enzyme Titration Linear Range				3.75 - 30) nM	RIPK1/AQT0150	
Sensor Peptide K _m Value				67 μľ	M	() 10000-	
ATP K _m Value				256 μΜ		DUBLE STORE	
DMSOTolerance (highest % recommended)			(1	4			
Staurosporine IC50 Determination at ATP Km				370 nM		0 60 120 180 240	
						Time (min)	
	Kinase Name	Conc. (nM)	Sox-based Substrate Name	Normalized Reaction Rate (RFU/pmole/mi	Normalized Rate StndError (RFU/pmole/mi	Assay Strength Key Very Strong > 1,000 (RFU/pmole/min) Strong 300 to 999 (RFU/pmole/min) Moderate 100 to 299 (RFU/pmole/min)	
	RIPK1	15	AQT0150	250	3	Weak 30 to 99 (RFU/pmole/min)	

Under the conditions utilized for this experiment, the assay is Moderate