

AQT0682 - BRAF [V600E] Assay Validation

PhosphoSens®-Kinetic Assay Format

Outline for this Study

PhosphoSens-Kinetic Assay Validation

Enzyme Source, Construct, and Lot Information:

Invitrogen BRAF(V600E) (Cat#/Lot#: PV3849/2421702F) amino acids 416-766; GST tagged

Reference Compound Information:

GW5074 MedChemExpress (HY-10542)

Experiments to be run:

Enzyme Titration

Sensor Peptide K_m Determination

ATP K_m Determination

DMSO Tolerance Test

Reference Compound IC₅₀ Determination at ATPK_m

Enzyme Titration

AssayQuant®

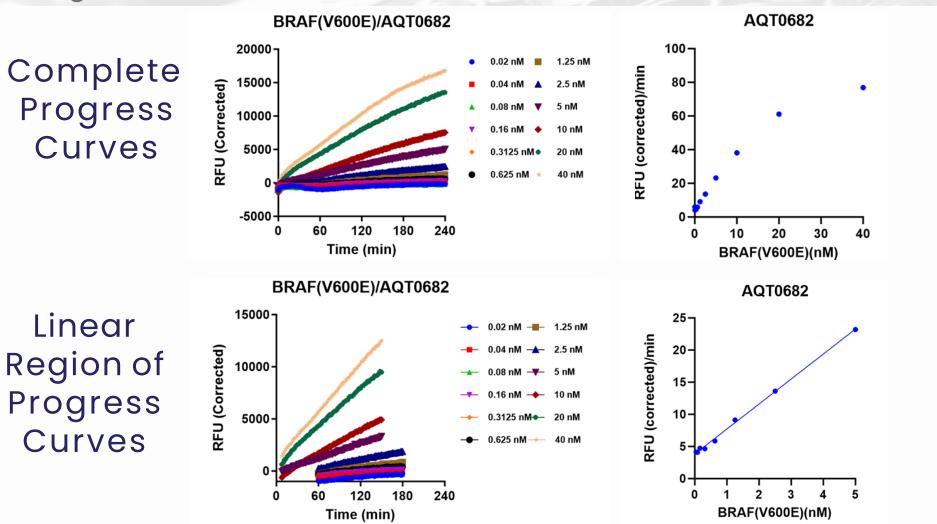
Reaction Conditions and Set Up

Reaction Conditions:

54 mM HEPES, pH 7.5 1mM ATP 1.2 mM DTT 0.012% Brij-35 1% glycerol 0.2 mg/ml BSA 0.55 mM EGTA 10 mM MgCl₂

 $15 \, \mu M \, AQT0682$

0.02, 0.04, 0.08, 0.16, 0.3125, 0.625, 1.25, 2.5, 5, 10, 20, and 40 nM BRAF [V600E]


Reaction Set Up:
2 or 2.5 μL10x Sensor Peptide14 or 17.5 μLReaction Mix with ATP & DTT4 or 5 μL1x EDB or Kinase dilutions (5x in EDB)20 or 25 μLFinal reaction volume

Reactions were run at 30°C for 240 minutes in either Corning, low volume 384-well, white flat round bottom polystyrene NBS microplates (Cat. #3824) at 20 or 25 μ L final well volume or in in PerkinElmer, ProxiPlate-384 Plus, white shallow well microplates (Cat. #6008280) at 20 μ L final well volumeafter sealing using optically-clear adhesive film (TopSealA-Plus plate seal, PerkinElmer [Cat. #6050185]) in a Biotek Synergy Neo 2 microplate reader with excitation (360 nm) and emission (485 nm) wavelengths.

Notes:

Enzyme Titration

Progress Curves

Linear

Range

Enzyme Titration

Reaction Rate Table

Enzyme Conc. (nM)	Normalized Reaction Rate (RFU/pmole/min)	Normalized Rate Stnd Error (RFU/pmole/min)				
0.02	14,940	409				
0.04	5,171	144				
0.08	5,123	164				
0.16	2,968	86				
0.3125	1,457	43				
0.625	937	21				
1.25	732	13				
2.5	545	6				
5	464	2				
10	381	2				
20	306	2				
40	192	1				

The reaction is linear from 0.625 - 5.0 nM

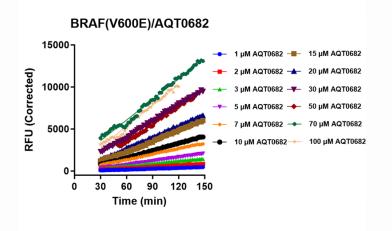
Sensor Peptide K_m Determination

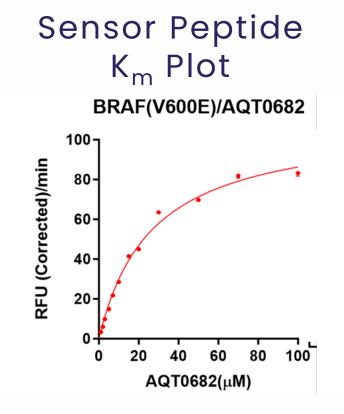
Reaction Conditions and Set Up

Reaction Conditions:

54 mM HEPES, pH 7.5 1mM ATP 1.2 mM DTT 0.012% Brij-35 1% glycerol 0.2 mg/ml BSA 0.55 mM EGTA 10 mM MgCl₂ 1, 2, 3, 5, 7, 10, 15, 20, 30, 50, 70, and 100 μM AQT0682 15 nM BRAF [V600E]

Reaction Set Up:
2 or 2.5 μL10x Sensor Peptide14 or 17.5 μLReaction Mix with ATP & DTT4 or 5 μL1x EDB or Kinase dilutions (5x in EDB)20 or 25 μLFinal reaction volume


Reactions were run at 30°C for 240 minutes in either Corning, low volume 384-well, white flat round bottom polystyrene NBS microplates (Cat. #3824) at 25 μ L final well volume or in in PerkinElmer, ProxiPlate-384 Plus, white shallow well microplates (Cat. #6008280) at 20 μ L final well volumeafter sealing using optically-clear adhesive film (TopSealA-Plus plate seal, PerkinElmer [Cat. #6050185]) in a Biotek Synergy Neo 2 microplate reader with excitation (360 nm) and emission (485 nm) wavelengths.


Notes:

Sensor Peptide K_m Determination

Titration Curves and K_m Plot and Table

Sensor Peptide Titration Curves

Sensor Peptide K_m Table

Michaelis-Menten	
Best-fit values	
Vmax	109.2
Km	26.59
Std. Error	
Vmax	4.235
Km	2.515
95% CI (profile likelihood)	
Vmax	100.6 to 119.1
Km	21.73 to 32.70
Goodness of Fit	
Degrees of Freedom	10
R squared	0.9924

Sensor Peptide K_m is 27 µM

How Can We Help? For technical questions, please reach out at hello@assayquant.com

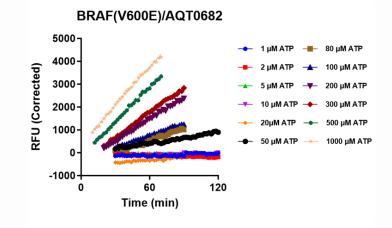
ATP K_m Determination

Reaction Conditions and Set Up

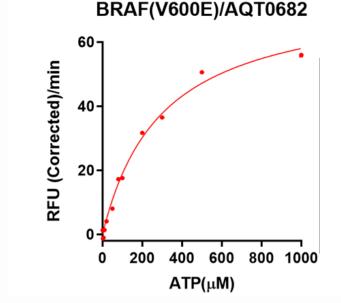
Reaction Conditions:

54 mM HEPES, pH 7.5
0, 2.0, 3.9, 7.8, 16, 31, 63, 125, 250, 500, 1000, and 2000 μM ATP
1.2 mM DTT
0.012% Brij-35
1% glycerol
0.2 mg/ml BSA
0.55 mM EGTA
10 mM MgCl ₂
15 μM AQT0682
15 nM BRAF [V600E]

Reaction Set Up:
2 or 2.5 μL10x Sensor Peptide14 or 17.5 μLReaction Mix with ATP & DTT4 or 5 μL1x EDB or Kinase dilutions (5x in EDB)20 or 25 μLFinal reaction volume


Reactions were run at 30°C for 240 minutes in either Corning, low volume 384-well, white flat round bottom polystyrene NBS microplates (Cat. #3824) at 25 μ L final well volume or in in PerkinElmer, ProxiPlate-384 Plus, white shallow well microplates (Cat. #6008280) at 20 μ L final well volumeafter sealing using optically-clear adhesive film (TopSealA-Plus plate seal, PerkinElmer [Cat. #6050185]) in a Biotek Synergy Neo 2 microplate reader with excitation (360 nm) and emission (485 nm) wavelengths.

Notes:


ATP K_m Determination

Titration Curves and K_m Plot and Table

ATP Titration Curves

ATP K_m Table

Michaelis-Menten	
Best-fit values	
Vmax	75.34
Km	299.1
Std. Error	
Vmax	4.175
Km	38.10
95% CI (profile likelihood)	
Vmax	67.13 to 85.34
Km	228.4 to 394.7
Goodness of Fit	
Degrees of Freedom	10
R squared	0.9908

ATP K_m is 299 µM

DMSO Tolerance Test

AssayQuant[®]

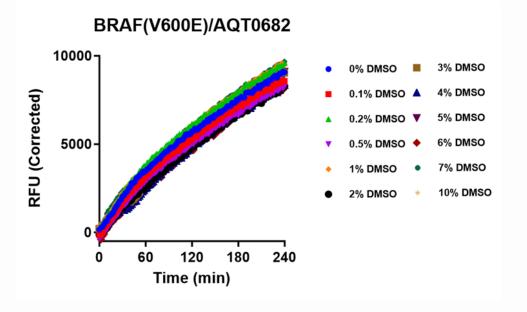
Reaction Conditions and Set Up

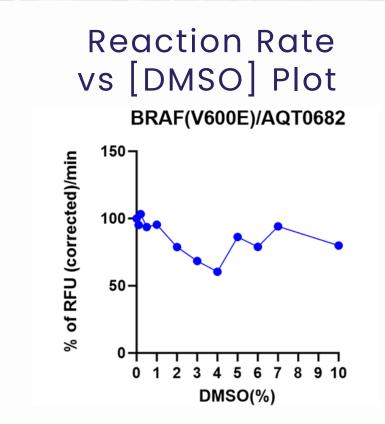
Reaction Conditions:

54 mM HEPES, pH 7.5
1 mM ATP
1.2 mM DTT
0.012% Brij-35
1% glycerol
0.2 mg/ml BSA
0.55 mM EGTA
10 mM MgCl₂
0, .01, .02, .04, .08, .16, .31, .63, 1.3, 2.5, 5.0, and 10% DMSO
15 μM AQT0682
15 nM BRAF [V600E]

Reaction Set Up:
2 or 2.5 μL10x DMSO dilutions14 or 17.5 μLReaction Mix with Sensor Peptide, ATP & DTT4 or 5 μL1x EDB or Kinase dilutions (5x in EDB)20 or 25 μLFinal reaction volume

Reactions were run at 30°C for 240 minutes in either Corning, low volume 384-well, white flat round bottom polystyrene NBS microplates (Cat. #3824) at 25 μ L final well volume or in in PerkinElmer, ProxiPlate-384 Plus, white shallow well microplates (Cat. #6008280) at 20 μ L final well volumeafter sealing using optically-clear adhesive film (TopSealA-Plus plate seal, PerkinElmer [Cat. #6050185]) in a Biotek Synergy Neo 2 microplate reader with excitation (360 nm) and emission (485 nm) wavelengths.


Notes:


DMSO Tolerance Test

Titration Curves and Inhibition Plot

Complete Progress Curves

No change in enzyme activity out to 1% DMSO

IC₅₀ Determination

Reaction Conditions and Set Up

Reaction Conditions:

54 mM HEPES, pH 7.5

ATP at K_m

1.2 mM DTT

0.012% Brij-35

1% glycerol

0.2 mg/ml BSA

0.55 mM EGTA

10 mM MgCl₂

1% DMSO

 $15 \, \mu M \, AQT0682$

15 nM BRAF [V600E]

0.1 mM GW5074 was serially diluted (3-fold, 11-point) in 100% DMSO. The series was then diluted 10-fold into BSA (with a final concentration of 0.2 mg/mL BSA in 10% DMSO) to prepare the 10x compound stocks.

Reaction Set Up:

- 16 μL Reaction Mix with Sensor Peptide and Inhibitor
- $4 \mu L$ 1x EDB or Kinase dilutions (5x in EDB)
- 20 μL Final reaction volume

Reactions were run at 30°C for 240 minutes in either Corning, low volume 384-well, white flat round bottom polystyrene NBS microplates (Cat. #3824) at 20 μ L final well volume or in in PerkinElmer, ProxiPlate-384 Plus, white shallow well microplates (Cat. #6008280) at 20 μ L final well volumeafter sealing using optically-clear adhesive film (TopSealA-Plus plate seal, PerkinElmer [Cat. #6050185]) in a Biotek Synergy Neo 2 microplate reader with excitation (360 nm) and emission (485 nm) wavelengths.

Inhibitors are added via direct (0.4 μ L of 50X stock in 100% DMSO) or intermediate dilutions (2.0 μ L of 10X stock in 10% DMSO).

Notes:

IC₅₀ Determination

Progress Curves and IC₅₀ Curves and Table

3000

2500

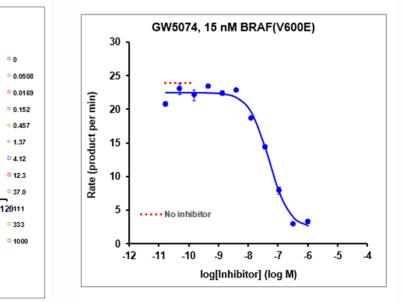
2000

1500

1000

500

-500


-1000

Product

Linear Region of **Progress Curves**

GW5074, 15 nM BRAF(V600E)

IC₅₀ Curve

C_{50}	Tal	ble
00		

Parameter	Value				
Bottom	2.2				
Тор	22.5				
log IC50	-7.31				
IC50 (nM)	49.35				
Ki (nM)	24.67				
Slope	-1.296				
R squared	0.988				
IC50 approx SE (nM)	1.66				
50% inhibition (nM)	58.54				

Time (min)

The Y-axis label is RFU/min.

GW5074 IC₅₀ Determination at ATP K_m is 49 nM

Summary

Assay Validation Results and Progress Curve and Assay Strength at 1 mM ATP

Experiment				Resul	t		Progress Curve					rve
Enzyme Titration Linear Range				0.625 - 5.0) nM	1	BRAF(V600E)/AQT0682					
Sensor Peptide K _m Value				27 μN	1	() 10000-						
ATP K _m Value				299 μN	Λ	Correct Correc		20 nM BRAF(V600E)				
DMSOTolerance (highest % recommended)			d)	1			5000-					
GW5074 IC50 Determination at ATP Km is			49 nM			0- <u> </u> 0	60	120	180	240		
						Ti	me (m	in)				
			Say basad	Normalized	Normalized Rate					y Strength I	-	
	Kinase Name	Conc. (nM)	Sox-based	Reaction Rate	StndError			Very S	-) (RFU/pmole 99 (RFU/pmo	
			Substrate Name	(RFU/pmole/min)	(RFU/pmole/min)			Stro Mode	-		99 (RFU/pmo	
BRAF(V600E) 20 A		AQT0682	306	2			We	ak		9 (RFU/pmole		

Under the conditions utilized for this experiment, the assay is Strong